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1.0 INTRODUCTION

The simulation program described in this memorandum
was written in order to supply a tool by which the performance
of the Lunar Roving Vehicle (LRV) navigation (NAV) system
could be evaluated. In particular, one is interested in
evaluating the error in the NAV system resulting from gyro
drift rates, gyro misalignments, odometer errors and errors
associated with different traverses, lurains and LRV speeds.

Two parallel NAV systems are simulated in this program,
the first of which is the accurate or reference system. This
simulated system has no measurement errors and it performs a
most accurate computation in order to determine the LRV position
based on the gyro and odometer readings. The second system is
the real (or computed) system which simulates the actual LRV NAV
system. This system uses erroneous measurements due to wheel
slip, gyro misalignment, gyro drift and intertial rotation on
the moon. This system also assumes erroneously that the heading
reading of the gyro is the angle between the projection of the
LRV advance vector on the North-East plane and North. The
comparison between the reference system and the real system
indicates the accuracy of the LRV NAV system.

A schematic diagram of the simulation program is
shown in Figure 1. As an input to both the systems discussed
here, we may assume a certain deterministic traverse
(box 3) or a random traverse (boxes 1 and 2) or both. The
deterministic traverse contains inputs to the NAV systems
which simulate a superposition of sinusoidal, three-dimensional
angular motions which are added to the gross traverse. The
gross traverse is a low frequency or a constant angular motion
which describes the angular time history of the LRV while
performing a motion along the gross details of the traverse.
The generation of the random LRV attitude occurs in two stages.
At the first stage, after the selection of LRV speed and one
of four kinds of lurains, the program generates four signals
which simulate the elevation of the four LRV wheels as a func-
tion of time. These elevations comply with the given Power
Spectrum Density (PSD) curve for the selected speed and lurain
and with certain logical assumptions on the Cross Power
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Spectrum Density (CPSD) of the wheels. This operation is
represented by box 1 in Figure 1. The four wheel elevations
generated in this stage feed into the linear LRV dynamic model
(box 2) from which the resultant LRV angular motions are
computed. The outputs of boxes 2 and 3 are three angle differ-
ences between the present orientation of the LRV coordinates and
this coordinates orientation as it was one iteration ago.

The angular information enters boxes 4 and 5. 1In
box 4 a most accurate computation of the LRV position is being
performed. This is done by, first, computing the new Euler
angles which describe the LRV attitude after the change of the
LRV orientation. Secondly the three dimensional vector which
describes the advance of the LRV on the moon during the last
iteration interval is projected on the local lunar plane
defined by the North-East directions. This projected compo-
nent is resolved into North and East components which are
added respectively to the North and East registers. Finally
from the contents of these registers the range from the LM and
bearing to the LM is computed. In box 5, the simulation of the
real NAV system is carried on. The vector of angle differences
which feeds box 4 is contaminated here with erroneous gyro
readings due to gyro drift and due to the fact that the gyro,
being an inertial measuring device, measures the rotation of
the LRV w.r.t. (with respect to) an inertial system although
it is interpreted as a rotation w.r.t. the lunar surface. The
Euler angles corresponding to the real NAV system are computed
in this box taking in account gyro misalignment. The last com-
putation yields the heading that the real gyro would have mea-
sured. The Central Processing Unit (CPU) of the real NAV
System erroneously interprets this reading as the azimuth of
LRV as projected on the North-East lunar plane corresponding
to the LRV computed position and hence resolves the LRV advance,
which contains wheel slipage, into North and East components
which are added to the North and East registers of the simulated
true LRV NAV system. As was the case for the perfect system, the
indicated range and bearing are also computed from the contents of
the north and east registers. Periodically, the program prints
out the correct and the computed ranges and bearings and their
differences which indicate the errors of the simulated real
LRV NAV system. The basic units system used in this simulation
is the MKS system. Sometimes the time is converted to minutes
for clear print-out reasons.

2.0 DESCRIPTION OF THE MAIN PROGRAM (LRVNAV)

A Flow Chart describing the sequences of the opera-
tions executed in the main program is shown in Fig. 2. To
facilitate the correspondence between this write-up and the
listing of the main program, we will divide the description of
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the main routine according to the division of the listing
with the difference that here we start the numbering of the
paragraphs with the number 2.

The program, which 1s designated as LRVNAV, starts
with real, double precision, dimension, common and data
statements and then it proceeds as follows.

2.1 Constants

The program sets up the values of the constants used
in this program such as lunar rotation rate, lunar radius, etc.

2.2 Initial Conditions

The set of initial conditions for the present run
are read from data cards, while the initial conditions which
are common to all the runs are reset in the program itself.

2.3 Start Simulation Cycle

The LRV is assumed to be in motion and the simula-
tion of the LRV NAV system starts.

2.3.1 Find True and Computed Body to Lunar Angular
Rotation (In Lunar Coordinates)

The main program calls subroutine ANGLES which gen-
erates three angle differences. They are the pitch, roll and
yaw angular incremental changes which occurred between the
last NAV simulation time and the present NAV simulation time.
These increments are given in the local lunar coordinate sys-
tem as shown in Figure 3.

OTE (3 Qp {Z) YAW (LRV COORDINATES}

{x) PITCH (LRV COORDINATES)

DTE(1) (3)

(E}(1)

(N} {2)

DTE(2) LUNAR LOCAL
COORDINATE

{y) ROLL (LRV COORDINATES) SYSTEM

FIGURE 3 - LRV ALTITUDE ANGLE INCREMENTS RESOLVED ALONG THE LOCAL LUNAR
COORDINATE SYSTEM




After being generated, these increments are divided by the time
increment through which they occurred to create, WA, the LRV
angular velocity w.r.t. the lunar surface which is resolved
along the local lunar coordinate system. These angular velo-
cities are the entries to boxes 4 and 5 of Figure 1. In box 5,
the processed angular velocities are the inertial ones because
the gyro measures inertial rotations. So, in addition to
these angular velocities, the gyro also measures the angular
velocities of the local lunar coordinate system w.r.t. an
inertial frame and therefore the two kinds of angular veloci-
ties are added to yield the angular velocity vector (WAC)
processed in box 5, the simulated real LRV NAV system. From
Figure 4 it is seen that wr the angular velocity vector of

the local lunar coordinate system with respect to an inertial
one, resolved along the lunar coordinates, is given by

k; )
wLI = R cosn + Q] cosA (1)

( iL )
—=— + Q] sinx
Recos)

A g

where R is the radius of the moon, X is the latitude of the
LRV, © is the moon rotation rate and X, and YL are, respective-

ly, the East and North velocities of the LRV w.r.t. the moon (X
is small enough to be neglected) -

X, Yy, Z; ARE THE AXES OF
THE LOCAL LUNAR COORD-
INATE SYSTEM

FIGURE 4 - THE ROTATION OF THE LOCAL LUNAR COORDINATE SYSTEM



2.3.2 Find True and Computed Euler Angle

Next the program calculates the Euler angles in box
4 as well as in box 5. No matter how the perfect model of the
LRV has rotated up to the present time, it can always be con-
sidered as a successive rotation about three axes in space.
We choose the sequence as shown in Figure 5 because the gyro
reading is one of the Euler angles rather than being a non-
linear function of the two or the three of them. The reading
of the directional gyro (DG) is the Euler angle a.

Y
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XL ¥ {ROLL)
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{a) ROTATION OF THE {b) ROTATION OF THE (c) ROTATION OF THE
L (LOCAL LUNAR} YSYSTEM BY AN BSYSTEM BY AN
SYSTEM BY AN ANGLE § ABOUT ANGLE —ax ABOUT
ANGLE v ABOUT THE X, AXIS THE ZB AXISTO
THE XL AXIS TO THZ BSYSTEM THE aSYSTEM.
TO THE 'YySYSTEM THE « SYSTEM

IS THE LRV SYSTEM!

FIGURE 5 - DEFINITION OF EULER ANGLES FOR THE LRV ORIENTATION WITH RESPECT TO THE
LOCAL LUNAR COORDINATE SYSTEM

Going back to Figure 2, we see that between the
previous and present updates of the system, the orientation,
and hence the Euler angles of the vehicle, have changed due
to the existence of WA, an angular velocity between the LRV
and the lunar surface as defined in the previous paragraph.

In order to compute the formulae for updating the Euler angles,
one should consider the relatinship between the angular velo-
city WA and the rate of change of the Euler angles. Let DE be
the direction cosine matrix which transforms vectors from the

Yy to the L coordinate system (Figure 5.a) and D$ from the 8 to

the vy coordinate system (Figure 5.b). It can easily be shown
that:



('cosy 0 siny 1 0 0
D{ = [_ 0 1 0 + + «(2) and Ds =/ 0 cosB sing | .
-siny 0 cosy 0 -sinB cosB

It is obvious then that the direction cosine matrix DE which

transforms vectors from the B to the L coordinate system is the
multiplication of these two matrices; that is,

—‘cosY sinf+*siny sinys cosg
= 0 cosB -sins . (3)
—-siny sinB.cosy cos8-+cosy

From Figure 5.a we realize that Y is a vector along the
YL axis in the L coordinate system; therefore, in this system its

contribution to the rotation rate of the LRV is given by the
vector
ﬂ
rb

Y . (4)

L0

8 is directed along the XY axis in the y system; therefore, its
contribution to the LRV given in the L coordinate system is

—.1
B

D{ 0 . (5)

0
L -

Similarly the contribution of -a is

o]

0 . (6)

H ™

-0
L -
The sum of equations (4), (5) and (6) yields the angular veloci-
ty of the LRV w.r.t. the lunar surface given in the local lunar




coordinates which by our previous definition is the vector WA
as defined in the previous section; hence:

—~ — = (" .‘! - -
WA(lﬂ 0 8 0
= y Y B
WA (2) Y + D 0 + D 0 . (7)
WA (3 0 0 -0
- ( )_J S - 'J - GJ

Using equations (2) and (3) in equation (7) yields

— ~ - = 3
WA (1) 0 cosy -siny-cosB
wa(2)! = i{ + 0 B+ sing &
WA (3) Lp -si -cosB +cosy

| i siny § B

which can be written in a matrix form as

g -y o T i -

WA (1) 0 cosy -siny-<+cossg Y

wa(2)| = |1 0 sing B . (8)
WA (3) 0 =-siny -cosBscosy &J

. .Equation (8) can be easily solved for the Euler angle
rates a, B and y in terms of the vector WA and the Euler angles.
When the solutions are integrated we get the increments of the
Euler angles accumulated during the simulation time increment
(DT). It can be easily shown that they are:

T+DT
Ay = [tang-siny WA (1) + WA(2) + tanB-cosy-WA(3)]dt (9a)
T4+DT .
AB = [cosy+WA(1l) - siny*WA(3)]dt (9b)
T
T+DT
—  m l 3 . .
Aa = CosE [siny WA (1) + cosy+WA(3)]ldt . (9¢c)
T

Equations (9) are implemented in the program. The integration
method used is the simple trapezoid rule which was found to be
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sufficiently accurate. After Ay, AB and Ao are computed, they
are added to y, B, a respectively.

As one may suspect, a case of an analytic gimbal
lock may occur here since Euler angles are being used. From
equations (9) it is obvious that gimbal lock occurs when
cosB = 0 or B = * %. This however means that the LRV has

overturned and we exclude such a case from this simulation.

The computation of the Euler angles as described
here is done for the perfect NAV system. There are, however,
some changes in the computation of the Euler angles of the
real NAV system. (In this program, symbols ending with the
letter C denote that they are symbols belonging to the real
system.) First, the entry is not the vector WA but rather
the vector WAC whose generation was described in the preceed-
ing section. Secondly, the initial Euler angles are different
than those of the perfect system, which are set to zero, be-
cause of gyro misalignment, thus they are the gyro misalign-
ment errors expressed in Euler angles. Finally, the gyro
drlft rate has to be added to the expresssions obtained for

Yc’ Bc and ac It can be seen however, that the directional

gyro drifts only in the yaw angle. In conclusion, the equa-
tions of the true system, parallel to equations (9) of the
perfect system, are

T+DT

Ay, = J‘ [tan8c°sinyc-WAC(1) + WAC(2) + tanBc'COSYc'WAC(3)]dt
T
T+DT
ABC = J’ [cosyc-WAC(l) - sinyc-WAC(3)]dt
T
T+DT
Aac = - Sost, [SlnYc‘WAC(l) + cosYc-WAC(3)] - YDR_ dt
T .

where YDRr is the yaw drift rate given in radians per second.
2.3.3 Find True and Computed Lunar Velocity
Given V, the velocity of the LRV, one can find the

distance covered by the LRV during the simulation time interval.
We assume that this time interval is short enough, relatively
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to the LRV time constants, such that the LRV speed and orienta-
tion do not vary during this time interval. Now it is possible
to project V on the local lunar plane (East-North plane) and
resolve the projection into East (x) and North (y) components.
Going back to Figure 5, one can find the direction cosine ma-
trix which transforms vectors from the local lunar to the LRV
coordinate system. (An easy way to find it is to use Pio-

grams.l’z) The transformation of the local lunar (L) coordi-
nates to the LRV coordinates (a) is given by:

T A
X COSa *COSY -sina+*cosB =—cosa-*siny xL
¢ -sina+*sinBe siny -sina+*sinBecosy
Y = | sina*cosy cosa*cosB =-sina‘*siny Yo (10)
o +coso - sinB siny +cosa-+sinBecosy
LZ cosfe+siny -sinBg cosBecosy ZL
a-ak_ L

We chose the LRV roll axis to be the y axis of the
LRV coordinate system (Figure 3), that is, V is directed along

the Y, axis. We also chose XL axis and the YL axis to be the

local lunar East and North respectively (Figure 3). From equa-
tion (10) we see that

V= |V|-§a = |V|[(sina-cosy+cosa-sinB'siny)§L

+ COSa-cosB§L +(----)§L] . (11)

FIGURE 6 - THE EFFECT OF YAW ANGLE MEASUREMENT IN A TILTED PLANE
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This means that the true East-ward velocity of the LRV during
the simulation interval is

v, = |V| (sina+cosy+cosa+sing+siny) (12)

and the North-ward velocity is

Vv, = |V|:cosascoss (13)

To see how the corresponding computation is done for
the real system let us temporarily assume that the real system
measurements are accurate and let us consider Figure 6. Be-
tween two time increments the LRV has advanced by the distance
As from point O to point P. The yaw angle o which is measured
by the gyro is an angle in the plane TOP which is not parallel
to the East-North plane. In the perfect system we take this
fact in account and therefore we use equations (12) and (13)
which means that we realized that the projection of V on the
East-North plane is v, in Figure 6. In the real system, how-

ever, the angle o is assumed to be measured in the East-North
plane, that is, o = ¥ UOW and therefore the projection of V on
the East-North plane is taken as VLc in Figure 6 rather than

Vi Therefore, rather than using equations (12) and (13), the
real system uses the following equations
Ve = |V|+sina (14)
Ve = |V|+cosa (15)

and, indeed, when 8 = y = 0, that is, when a is really measured
in a plane parallel to the East-North plane, we see that equa-
tions (12) and (13) are reduced to equations (14) and (15).
Actually the real system measures @ and Vc,then added to the

wrong algorithm for computing Vec and Vnc we get

Voo = lvcl'sinac (16)

Ve = [Vcl-cosac . (17)

2.3.4 Find True and Computed Lunar Positions

The trapezoid integration rule is used here on equa-
tions (12), (13), (16) and (17) to yield the perfect (true) and
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the real (computed) lunar positions. (Note that the newly
computed true Y (North) position is used in the next simula-
tion pass to find the new latitude angle.)

2.3.5 Find True and Computed Range, Bearing and Total
Distance Traveled

The range of the reference LRV system to the LM
(Lunar Module) as well as the range of the true system is found
by taking the square root of the sum of the squares of the East and
North components of the distance. The bearing of the two sys-
tems to the LM is found by computing the arctan in degrees of
the East components divided by the respective North components
of the position and adding 180 degrees to the results. The
total distance covered (on the three dimensional traverse) is
found by

D = ZVi'DT .
i

2.3.6 Compute Errors

In this section, the operation symbolized by the
summation junction on the right hand side of Figure 1 is exe-
cuted. The error in x (East), the error iny (North), the
range and bearing errors are found by subtracting these quanti-
ties as computed by the reference system from the corresponding
quantities as computed by the real system.

2.3.7 Print Results

At this section, the values of the significant varia-
bles of the simulation are printed. The times of the print-outs
are optional and determined by input data.

2.3.8 Update Counter and Time for Next Step

At this point, the program adds 1 to the counter which
counts the number of passes through the simulation loop (not
counting the pass at zero time, that is, when T = 0). The pro-
gram also updates the time (T) for the next pass.

2.3.9 Align at the Right Time

When the simulation time reaches the predetermined
time for alignment, the heading of the real system is set to
that of the perfect system plus the misalignment error; that
is, the program executes the following equation:



where YM is the yaw misalignment error.

2.4 Change Traverse Profile

In this section the program checks whether it is time
to change to a new traverse leg (input data). If it is, the
program picks the suitable LRV speed, type of lurain, slip,
initial azimuth of the new leg, rate of azimuth change on this
leg and the time the LRV is parked before the beginning of the
leg. The program adds the drift accumulated by the gyro during
this parking time to the gyro reading e unless a realignment

is carried out at this time point. (Subroutine PARKLR is used
to compute the added drift due to lunar rotation.)

2.5 Stop if Spec is Exceeded and Check for Terminal Time

At this point, the program checks whether to continue
the simulation or to exit the simulation loop. If the indicated
maximum traverse time or the indicated maximum traverse distance
(both specified in the input data) are reached, the program
exits the simulation loop. The same also happens if the simulated
LRV NAV system errors reach the maximum allowable errors specified
in the input data.

2.6 Check for New Run

When the program exits the simulation loop, it reaches
this point where it plots the actual traverse on a 4020 plotter
and checks the data for an indication to start a new run. If the
result is negative, the program stops. If the result is positive,
the program starts a new traverse simulation.

3.0 THE GENERATION OF TRAVERSE RELATED ANGULAR INCREMENTS

It was mentioned in section 2.3.1 that at the beginning
of the simulation cycle the main program, LRVNAV, calls subroutine
ANGLES which generates three angular differences. They are the
pitch, roll and yaw angular incremental changes which occurred
between the previous NAV simulation time and the present one and
are given in the local lunar coordinate system. In this subroutine
a linear simulation of the LRV dynamics is carried out where the
excitations of the system are four random signals which simulate
the elevation of the LRV wheels. In other words, here the motion
of the LRV is simulated in order to obtain information on the
instantaneous orientation of the LRV NAV system. The equations
of the linear LRV dynamic model are per Stanley Kaufman of
Bellcomm.
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Consider the model shown in Figure 7

REansncg_J//
PLANE

FIGURE 7 - LRV MODEL FOR DYNAMICS ANALYSIS

The force F1 exerted by the lunar surface at wheel 1 is
given by

F1 = Kl(hl-zl) + Bl(hl-zl) + flo

where Kl and Bl are the suspension spring constant and the
viscous friction coefficient respectively, Zl is measured from the
reference location of point Py when h1 is zero and the LRV is

resting parallel to the reference plan. flO is the value of Fl
when the LRV is at this resting position. This equation is true

for all the four wheels, hence we can write:
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!

For small angles we can write

Zi = Z0 - Xley + ylex

where Z0 is the elevation of the LRV c.g. above its location
when the hi's are zero and the LRV is resting parallel to the
reference plane, and X and y, are the coordinates of Pl in the
XaYa plane. It can be shown that the last equation holds for
all the four wheels, that is

Substituting equation (19) in (18) yields
Fi = Ki(hi—Z0+xiey-yiex) + Bi(hi—Zo+xiey-yiex) + in (20)
i=1,2,3,4 .
Therefore the total force on the LRV in the ZL direction is
given by
4 4 4 4
F = ZFi = - 'zlei Zy +<i;lKixi 8y ~ iglxiyi 8, + inhi
i=1 - i=1
4
- B.)Z, + B.x.,Jo_ - B.y.]8_ + E:B h io0 .
=t 0 = 171y is1 i*1i)'x = ii i=1
But
F=M(Z_ - g) (22)

p

(21)

where M is the LRV mass and g is the gravity gradient on the sur-

face of the moon. We also know that at rest
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4
~Mg = Zfio '
i=1

therefore equation (22) can be written as

F = MZ0 + Zin . (23)

In order to formulate the LRV angular motion, we
first realize that for small angles

4
TX = E;yiFl
i=1
4
T =z - ZX-F- .
Y 11
i=1

Substituting equation (20) into the last two equations yields:

4
4 4 4 2
TX = - Z Klyl Z0 + g K XY Gy - ZKlyl 6 + ZKlylhl
=1 i=1 i=1 i1
(24)
4 . 4 _ 4 L), 4 .
- Z Blyl Z0 + Z BJ.Xiyi ey - Z:Blyl ex + ZBlylhl
i=1 =1 i=1 i=1

and
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4 . (25)

Note that in equation (24) there is supposed to be an extra
term on the right hand side. It is

4

Z Yifio

i=1

~e

however, this is exactly the torque about the x-axis when the
LRV is at rest and therefore has to be equal to zero. Similar-
ly, the term

z:.x.f.

i“io
=1

[

in equation (25) vanishes too for the same reason.

The dynamics of the LRV due to torques is expressed
by the following set of Euler equations

I8, + (I, = I)8 6, =7,
o, + (I, - I8 6 =T
1,0, + (I, - I8 6 =1, .
Assuming 6, = 0, the first two of the Euler equations are sim-
plified to
T, = I.0, (26.a)
Ty = Iyey (26.b)




where I. and I
X Y
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Equations (21),

are the LRV moments of inertia about the Xa
and Ya respectively (see Figure 7).

(24),

(25) and (26) can be written in a single matrix equation as

follows
MZOW -zK
I8, |= Ky
Ig KX
Y’y L
r
-B -IBy
2
+|~-LiBy -IBy
IBx <IBxy
where

and so on.

D(s)

-LZRy ZKxT
-ZKy2 LKxy
LKxy —Zsz
nien
LBx Zo
LBxy ex +
—ZBx2 6
- 5y-'

LK

LKy

LKxy

r-ZQ (5ﬂ

ex(s)

Ley(s)

o

Zc] Ky Ky K3 Ko |ihy
h
Ox|T] K1Yy KoYy K3¥3 Kuyy h2
3
L@y [lel -K2X2 —K3X3 K4X4_J 314
— -
~ ™ o T
, B, By B, ] hy
B B B B h2
1Yl P2¥2 P3¥3 Py¥ul| .
|TP1%1 Ba*2 "Ba¥3 TBe¥g ||
4
Z K,
1
i=1
4
ZKiyi
=)
4
ZKixiyi
i=1

I

N(s)

”Hl (s)]
Hz(s)
Hy (s)

(s)

-’

LH4

Laplace transforming equation (27) yields

(27)

(28)



where

D(s)

and

N(s)
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32M+szB+zK SIBy+IKy -8z Bx-r KX )
SIBy+L Ky szlx+ssz2+zKy2 -sIBxy-IKxy
t§2Bx—ZKx -sI Bxy-IKxy szly+ssz2+sz%J
—sB +K sB,+K sB,+K sB ,+K 7
171 2 72 373 4 74
sBlyl+Klyl sB2y2+K2y2 sB3y3+K3y3 sB4y4+K4y4
Eslel-lel —sBzxz-sz2 -sB3x3-K3x3 -sB4x4-K4x4-

We assume that the c.g. of the LRV is at its geometrical
center and that the suspensions are identical, thus

%5 |

il T *g
ly; 1 = vq
K. = K
L
B, = B i=1,2

' 3,4 .

Using these relationships the D(s) matrix becomes a
diagonal matrix whose inverse is also a diagonal matrix whose
elements are the reciprocal of the corresponding elements in

the D(s) matrix.

Premultiplying equation (28) by the matrix
-1 .
D “(s) yields

i A
Zo(sﬂ 5 1
Ms“+4Bs+4K
ex(s) =
1
8 (s)
y 2 2 2 .
L J Ixs +4Byds+4Kyd
O :
2 2 2
s
Iy +4Bxds+4de
. y
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sB+K

sByd+Kyd

Lfod+de

sB+K

sByd

—(sBxd
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— - -
sB+K sB+K Hl(s)
Hz(S)
+Kyd —(sByd+Kyd) —(sByd+de) HB(S) (29)
+de) sﬁxd+de —(sBxd+deL L_}-I‘]I(s)‘_‘

We are interested in the last two equations of this set of
three. They can be expressed by the following block diagram:

[ G (s) s OulS)

~—
D1 N
——\E: 6.(S) S(Byy) + Kyy
Hyts)— | —— | —4¢ s (4By2) S + aKy2
Hjﬁ___\r_—q,
Hgls—— 4

OY(S)

S(Bxy) + Kxy

2 2 2
Iys + (4Bxd) S +4Kxg

FIGURE 8 - A PARTIAL BLOCK DIAGRAM REPRESENTATION OF THE LRV ROTATIONAL DYNAMICS

The model shown in Figure 8 is simulated in subroutine ANGLES

using TRANSIM,

(3,4)

a transfer function simulation subroutine.

The inputs Hl(s), Hz(s), H3(s) and H4(s) are obtained from sub-

routine TERAIN which simulates the elevation of the four LRV
wheels during a lunar traverse.

In the model described here we find only ex and 0_.

y

6, is the LRV yaw angle. For the deterministic part of 6,

we have the traverse description while for the random part of
ez we take here the average between ex and ey.
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4.0 THE GENERATION OF THE WHEEL ELEVATIONS

In this subroutine four numbers which represent the
wheel elevations are repeatedly generated. Each chain of
numbers which represent the elevation of a single wheel satis-
fies a given PSD function. Moreover, the chains also satisfy
certain assumed cross PSD functions between each other.

Given a certain PSD function of some specified lurain,
one can generate a chain of numbers which possess this PSD
function by passing another chain of numbers, which constitute
a white noise, through a suitable shaping filter. Suppose that
the PSD function @hlhl(w) can be written in the following form

¢ 1h1(®) = HGu) H(-jo) : (30)

We recall(s) that if we pass a signal whose PSD function is
QXX(m) through a filter whose transfer function is W(s), then

the PSD of the filtered output signal, y, is given by

ny(w) = Qxx(w) W(jw) W(-jw) . (31)

Therefore if we pass a signal whose PSD function is 1 through

a filter whose transfer function is H(s) then using the rule
expressed in equation (31) we obtain the expression shown in

equation (30) for thhl(w)’ It turns out that 1 is the PSD

function of a white noise. From equation (30) we see that in
order to find H(jw) which will suit the desired PSD function,
one has to separate ¢h1h1(m) into a product of two conjugate

functions. This can be achieved if the PSD function plotted on
a logarithmic scale is approximated by straight lines and the
slope of the i-th line can have only a discrete value which

can be any even integer, that is; the i-th slope can have the
value me m, = 0,+1,+2,.... Then H(s) is expressed by

- m, - s My
H(s) = YK s ]T (1 + 22) . (32)
i=1 i
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K is the value at w = 1 rad/sec. of the straight line approxi-
mating the lowest frequency region of the PSD function (whether
it reaches that point when approximating the PSD function or
artificially extended to that point) and m is half the slope

of this line. a; is the frequency in radians/seconds of the
breaking point of the i-th line from the preceeding line, m,

is half of its slope and n is the number of the breaking points.
Note that i = 1 corresponds to the first breaking point and the
following straight line.

Using this technique one can generate the heights
hl(t) of wheel number one in Figure 7. It is obvious that h3(t)

will be the same sequence of numbers delayed by the time At it
takes the rear wheel to reach the initial position of the front
wheel. About h2(t), one knows that it has to have the same PSD

function as hl(t); however, there is one important degree of
freedom which is the cross correlation between h2(t) and hl(t).
It is obvious that this freedom exists since for h2(t) to satis-
fy the same PSD function which h (t) satisfies it is enough that
h2(t) = hl(t)’ Yet if h (t) h (t+%) it still satisfies the

same PSD function. The latter ch01ce may seem reasonable if iy
corresponds to the time it takes a body to travel from point 2
to point 1 if its speed is equal to the speed of the LRV. This
choice however is too rigid; therefore, an assumption concerning
the cross PSD functions of hl and h2 is required rather than a

relationship between h1 and h2 themselves, thus although hz(t)
# h; (£+T) yet we assume that

r'.
+

lim 1 -
o —2? hl()\)hz(l'*"t)d)\ =

lim 1

tow 3T hy (A hy (++T)AX . (33)

!
o
'
ot

This equation follows from the assumption that the autocorrela-
tion function of the lurain height along a straight traverse is
the same in every direction the wheel traverses on a certain
lurain; that is, the lurain autocorrelation function has circu-
lar symmetry in the x and y coordinates. Using the symbols for
correlation functions, equation (33) is written as

Ypinz (¥ = whlhl(r+%)




and in particular for v = 0

¥ (0) =y (¥) . (34)
by h,h,y

It is reasonable to assume that
1) (1) = a (7) (35
hlh2 whlhl )

where a is a positive number smaller than one which decreases
with the increase of T. For 1 = 0 equation (35) becomes

Y (0) = a (0) .
hyhy *n by

From the last equation and equation (34)

or
a = ;o1 . (36)

If it is reasonable to approximate ¢, . (w) by
171

_ K
th(m)_ 2

171 w
1 + (5)
then via an inverse Fourier transform

(0).e'|1|9

() =V
hy hyhy

Yh h

1 1
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Ny
Letting v = T and using the result in equation (36) yields
a=e (37)

Having obtained a, it will now be shown how to

generate h,(t) such that ¢hlh (o) = thlhl(w) and ¢h2h2(w)
= %y p ().

171

=h
- 1-a® + a f(t) H(S) [ x(t) =h, 1)
32 +
y(t) =h, ()
H i | H(S) |

FIGURE 9 - A FILTER TO GENERATE h, (t) AND h,(t)

Consider Figure 9 where v and u are two independent white
noise number chains. It is obvious that

\/l-a2

f = alp + 5 v] .
a

Therefore
Veo(T) = a%y (1) + (1-ad)yp_ (1) + (1-a%) [y (1) + v (1)]
££f - wuu vV TRY vp 't :

But since v and u are white noises then

by (1) = ¥ (o)

and being independent

by, (1) = b 1) =0 :




Therefore

1
<
~~
-
~—

wff(r)

and

e (0) 1 (38)

or in other words f(t) is also a white noise. On the other hand,
it can be easily shown that

/ 2
1-a v (1)

wfu(T) = awuu(T) + a Vi

and again since v and p are independent

wfu(r) = awuu(r) ;

therefore,

¢fu(w) = a . (39)

From equation (31) we see that the PSD of the out-
put signals of the filter are

o (w)

XX fo(w) H(‘jw)H(jw)

H(~jw) (Jw)

and

H(-jw) (jw)

o (w)

vy IR CY H(-jw)H(juw)

and from equation (30) we realize that

P () = Ogy () = oy @) (40)
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(5)

It is well known that for such an arrangement of filters

Qxy(m) = qu(m) H(-jw)H(jw) .
Using equation (39)

¢xy(w) = a H(-juw)H(jw)
and again, using equation (30) we get

¢xy(w) = aéhlhl(w) . (41)

From equations (40) and (41) we see that x(t) and y(t) satisfy
the requirements for the auto and cross-PSD functions of hl(t)

and hz(t); therefore, they are used as hl(t) and h2(t) respec-
tively. In a manner similar to the generation of h3(t), h4(t)
is equal to h2(t + AT) where AT is the time it takes the rear

wheels to reach the position of the front wheels.

In this subroutine the white noise is the output of
a random number generator, generating numbers which have a
Gaussian distribution with a standard deviation of 1. The PSD
function is taken from "MSFC Natural Environment Design Criteria,
Criteria Guidelines for Use in Design of Lunar Exploration Vehi-

cles, ﬁxhibit No. 1". The PSD is given in metersz/cylces/meter)
versus cycles/meters. One has to convert the PSD function into

@etersz/(radians/second) versus radians/second in order to use
i1t. The net* . effect of this conversion on H(s) is that rather
than using equation (32), one has to use

n m,
H(s) = \/ || (1 + ———) (42)
i=1

where V is the LRV velocity in meters/second. Four kinds of
PSD functions for four kinds of lurain are given in the above
mentioned document. After approximating them by straight
lines (as shown in Fig. 10) and application of equation (42)
the following filter equations were obtained

*We divide the given PSD function by two since H(s) also
simulates the contribution of the negative part of the frequency
range.
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Lurain Lurain .
ID Number Description Filter
1 Smooth Mare H(s) 1.265[st t4r
L+ 507536,V
2.239//V (1 + rrier)
2 Rough Mare H(s) = . 0.6524V
A+ 5083w L * 5.5024%
0.944//7ET (1 + 1)
3 Hummocky H(s) = . S
Upland A+ 519 1+ 15560
2.239//V87 (1 + S )
4 Rough Upland H(s) = S J.ZS3V
A+ 510w+ gagv
[+ 4
=
gg 10.
Em 1.
Eg R
LA 1
o 001
&€ o001
001.00 1 1.
FREQUENCY — [C_YE':ES_ ]
METER
{a) SMOOTH MARE (b} ROUGH MARE
1. 10.
A 1.
.01 1
.001 01
.0001 001
.00001 10001
{c) HUMMOCKY UPLAND {d) ROUGH UPLAND.

FIGURE 10 - THE GIVEN LOWER AND UPPER LIMITS OF THE PSD FUNCTIONS AND THEIR STRAIGHT
LINE APPROXIMATION
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All the PSD functions of these lurains can be roughly approxi-

- mated by

o (0) = K//V e 45
hh 1+ ( w )2
0.07536.V

Then following equation (37)

~7(0.07536)
Az e .07536) V

,
and using the relationship T = D/V, where D is the distance
between the two front (or rear) wheels, the last equation
becomes

-{(0.07536)D .
a = e

The filter shown in Figure 9 is simulated in TERAIN subroutine

using TRANSIM and the random number generating routine BARN.(G)
As described, the values of h3(t) and h4(t) are obtained by de-

laying hl(t) and hz(t) by L/V where L is the distance between
the rear to the front wheels.

5.0 TIMING

Consider the block diagram shown in Figure 1ll.

BARN TERAIN ANGLES LRVNAV
f f jT — f ; _/\‘ f I
| |
| - . |
) e J
I r
| | | LRVNAV \ i o t
| |
| : | je————DT———> f= 1
L DT
| | ~ANGLES - t
P ? ' i i 1
. f .
: L——-TERAIN DELT | | | . 27 beELT
| 44 H\?Al\hhhlunuriu\\n b A A
I f3 =n- fz
L -——-—BARN >t
DELT/n

FIGURE 11 - THE FREQUENCY OF SUBROUTINE ENTRANCES
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It represents the sequence of data transmission from one rou-
tine to the routine it is being called from. 1In order for
the simulation to be efficient from the point of view of time
consumption, the execution time should be kept at minimum.
Consider the box named ANGLES in Figure 10. In this box the
simulation of the LRV dynamics is carried on and hence its
responses can be viewed as the responses of some low-pass
filters. Therefore it is senseless to ask this subroutine

to generate outputs for the main routine, LRVNAV, at a fre-
quency which is much higher than its band-width. A suit-
able frequency, fl’ of data transmission to the main routine

is a frequency which is twice the highest knee frequency of the
Bode diagram of the filters in subroutine ANGLES. A criterion
similar to this one is used to determine the frequency, f2, at

which ANGLES routine calls TERAIN routine for data. The choice
of this frequency is constrained by the fact that there should
be an integer number of data points generated in the time At
which is defined as the time it takes the rear LRV wheels to
reach the position of the front wheels at time t1 from where

the rear wheels were at time tl. If the distance between the

front and rear wheels is L and the LRV speed is V then

AT=% .

The reason for this constraint is that the wheel elevation
data (these are the data transmitted from TERAIN to ANGLES
routine) computed at time tl for the front wheel is used At

seconds later as the elevations of the rear wheels. The time
difference between the instants of data transmission from rou-
tine TERAIN to routine ANGLE is chosen therefore as the largest
integer part of t which satisfied the discussed criterion. In
general, fl # f2 or DT # DELT (see Figure 11), therefore, LRVNAV

usually calls for values from ANGLES at a time instant for which
they are not computed. If a set of values has already been
computed for a time larger than the time at which the vglues.are
called for by LRVNAV (this is possible because the running times
for LRVNAV and ANGLES are independent) then an interpolation
yields the necessary set. If on the other hand, the last ins;ant
for which a set of values were computed is earlier than the time
at which a set is needed then ANGLES routine advances in time
till its time is at least equal or just greater than the time gt
which the set is asked for. In the latter case, an interpolation,

again, yields the proper set.

While white noise has a constant spectrum at all fre-
quencies, we only require the output of BARN to have a cgnstgnt
spectrum in the pass hand of the filter of TERAIN. _The implica-
tion of this argument in a continuous system 1s obvious. In our
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case, however, we are dealing with a discrete system where, due

to the use of TRANSIM, it is assumed that a straight line connects
successive output points of BARN. This way the sampling rate
determines not only the cut-off frequency of BARN's ouput but

also changes the amplitude of the low frequencies. The sampling

frequency of BARN, f3, was found by a cut and try method. f3 was

chosen as a multiple of f2 which generates outputs of TERAIN
which fit within a reasonable tolerance the given PSD functions
of the appropriate lurain.

6.0 INPUT DATA

DT - The time increment of the simulation of the
main routine (LRVNAV) in seconds. The program
computes DT as was described in section 5,
unless it is specified to be otherwise.

TP - The first time at which a printout is desired
in minutes.

DTP - The time increment between printouts in minutes.
IROD - If IROD = 0, the program automatically follows
the baseline traverse (see Reference 7). If

IROD = 1, the program superimposes the random
angles generated by subroutine ANGLES on the
baseline mission. If IROD = 2, the program
follows the traverse imposed by the input data
without the random addition from ANGLES. If
IROD = 3, the program also does the latter with
a superposition of random angles from ANGLES.

LNRT -~ If other than zero, lunar rotation is taken in
account.

OLAMDA

The latitude in degrees of the landing point
(important only if the lunar rotation is
considered).

MPITCH

Upper limit on the magnitude, in degrees, of
the true and computed pitch angle. If it
reaches this angle, the program stops.

MAXGAM

The maximum magnitude in degrees of the roll
angle to which the astronauts will not respond.
When this angle is reached, it is reduced to

5° assuming that the astronauts will feel dis-
comfort and will drive the LRV such that the
angle is reduced.

MAXBET

Same for pitch.



SPECDR -

SPECDB -

IPRDYN -

IPRPSD -

YMD -

YDR -

FINALT -

DMAX -

IPHOTO

NPLOT -

Iv -

LURAIN -
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When this value of range error in meters is
reached, the program stops and prints out.

Same for bearing error in degrees when reached
outside a circle whose radius is equal to
SPECDR.

If not zero, the program prints out the
coefficients of the transfer functions which
are simulated in subroutine ANGLES.

If not zero, the program does the same in
subroutine TERAIN.

Yaw misalignment error in degrees.
Yaw drift rate in degrees.

The time in minutes for the termination of the
run.

The maximum distance that the wheels actually
travel in kms for a given mission. When this
distance is reached, the run is terminated.

If not equal to zero, the program generates
a 4020 plot of the actual traverse,.

The number of time increments between points
picked for the 4020 plot. (It is set auto-
matically to 20 unless the user specifies a
different number.)

If you want another run, set M = 1,

For the 0th leg:

If set equal to 1, V = 4.0 km/hr.
If set equal to 2, V = 8.0 km/hr.
If set equal to 3, V = 10.8 km/hr.
If set equal to 4, V = 16.0 km/hr.

For the 0th leg:

Set equal to 1 when LRV traverses on a smooth mare.

Set equal to 2 when LRV traverses on a rough mare.

Set equal to 3 when LRV traverses on a hummocky
upland.

Set equal to 4 when LRV traverses on
upland.

[\

rough
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s - Slip (a number between 0 to 1) during the 0th leg.

W - Azimuth rate of change in radians/hour during the
0Oth legq.

AZIMUT - The initial azimuth in degrees of the 0th leg.

AZBIAS - The azimuth bias in degrees which has to be

added to the true North, as plotted on the
traverse map, in order for it to coincide with
the map North.

TIJUMP (i) - i=1,2,...,100 -~ Time in minutes to start the

ith traverse legq.
ITABLE(i) - i =1,2,...,100 - The new speed code for this leg.
LTABLE(i) - i =1,2,...,100 - The new lurain code for this leg.
STABLE(i) - i =1,2,...,100 - The new slip for this leg.
WTABLE(i) - i =1,2,...,100 - The new azimuth rate of change

in radians/hour for this legq.

ATABLE(i) - i =1,2,...,100 - The initial azimuth in degrees
for this leg. (If the initial azimuth of this
leg is the final azimuth of the preceding leg
set ATABLE (i) to a number larger than 360.)

PTABLE(i) - i =1,2,...,100 -~ The time in minutes of the
duration of the stop at the beginning of this leg.

TMALIN(i) - i =1,2,...,50 - The time in minutes at which a
realignment should take place.

2031-1YB-ajj ;?E§%4§i:%;tzhack
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